
Build a Light Intensity Logger Using Visual Basic 2005

Copyright © April 2006 Emant Pte Ltd
www.emant.com

1 © 2005, 2006 Emant Pte Ltd www.emant.com

Table of Contents
Learning Objectives...5

Important Note.. 5
Introduction..6

Types of problems that are solved by measuring light intensity.....................................6
Computer based Measurement System... 7
Visual Basic.. 8

Exercise 1 – Use a Computer based Light Intensity Data logger.. 9
Objective... 9

Exercise 2 – First Visual Basic Program... 11
Objective... 11
Program 2.1 Hello World..13
Namespace.. 16
Class.. 16
Main.. 16
Important Notes...17

Exercise 3 – Variables, Expressions & Statements... 18
Objective... 18
Program 3.1 Calculate Equivalent Resistance.. 18
Variable Declaration... 18
Data Types.. 19
Assignment of Values into Variables..19
Expressions... 19
Statements... 20
Using Integral Data Types.. 20
Program 3.2 Calculate Equivalent Resistance using Integral Data Type......................21
Explicit Casting...21
How to measure resistance (optional exercise)...22

Exercise 4 – Console Input and Output... 23
Objective... 23
Program 4.1 Interactive Calculator... 23
Data Type String... 24
Reading from Console...24
Convert from string to double... 24
How to measure current (optional exercise)... 25

Exercise 5 – Analog Input (Measure Light Intensity)... 26
Objective... 26
Class, objects, methods, properties... 26
Program 5.1 Measure Light Intensity..27
Referencing Assemblies..27
Enumerations...30
Create the EMANT300 object.. 30
Open method... 30
Read Analog Voltage.. 30
Close method...30
Imports Directive.. 31
Using the Simulator...31

Exercise 6 – Analog Output...32
Objective... 32
Problem... 32
Solution... 32
Program 6.1 Measure Temperature using Thermistor.. 35
Constants... 36

2 © 2005, 2006 Emant Pte Ltd www.emant.com

Analog Output...36
Math.Log Method... 36
Math.Pow Method...36

Exercise 7 – Decision Making Statements...37
Objective... 37
Program 7.1 Night Light... 37
Relational and Boolean Operators.. 38
If statement..38
Digital Output..39
Measure temperature in oF or oC (optional exercise)..39

Exercise 8 – For Loop..40
Objective... 40
Program 8.1 Measure Light Intensity 10 times...40
For Loop..41
Delay... 41
Traffic Lights using LEDs (optional exercise)..42

Exercise 9 – Digital Input.. 43
Objective... 43
Program 9.1 Read Switch..43
Data Type Boolean..43
Read Digital Input... 44

Exercise 10 – Do Loop.. 45
Objective... 45
Program 10.1 Measure Light Intensity Until Switch Pressed....................................... 45
Do statement..46
Pedestrian Crossing (optional exercise).. 46

Exercise 11 – Array... 47
Objective... 47
Program 11.1 Basic Statistics..47
Array... 48
Statistics.. 49
Console Formatting...49

Exercise 12 – File IO... 50
Objective... 50
Program 12.1 Log to File.. 50
StreamWriter Class... 50

Exercise 13 – Create a Windows Application... 52
Objective... 52
Label Control.. 54
NumericUpDown Control...55
Button Control...55
Events..56

Exercise 14 - Install the EMANT300 Components and Instrument and Controls............ 61
Objective... 61

Exercise 15 – Create an Instrument User Interface... 64
Objective... 64
Program 15.1 Modify Timer Event Handler... 65
Assigning Values to the Controls..67

Appendix A – Using the Simulator..68
Appendix B - Emant300 Class Reference... 69

Example...69
Requirements...69
List of Members.. 70

3 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300 Constructor.. 70
Emant300.Simulation Property... 70
Emant300.HwId Property... 70
Emant300.CommPort Property... 70
Emant300.Open Method... 71
Emant300.Open Method (bool, string)... 71
Emant300.Close Method...71
Emant300.Reset Method... 71
Emant300.ConfigDIO Method (Int32)..72
Emant300.ConfigPWMCounter Method (Emant300.PWMORCNT,
Emant300.EVENTORTIMED, Int32, Int32)..72
Emant300.ConfigAnalog Method (Double, Emant300.POLARITY,Int32).................72
Emant300.ConfigAnalogAdvance Method (Emant300.POLARITY, Emant300.FILTER,
Emant300.CALIBRATION, Boolean, Emant300.REF, Emant300.VREF, Boolean,
Emant300.PGA, Int32, Int32, Int32)...73
Emant300.ReadAnalog Method (Emant300.AIN, Emant300.AIN)............................. 74
Emant300.ReadAnalogWaveform Method (Emant300.AIN, Emant300.AIN, Int32)..74
Emant300.WriteAnalog Method (double).. 74
Emant300.ReadDigitalBit (Int)... 75
Emant300.ReadDigitalPort... 75
Emant300.WriteDigitalBit Method (int, bool)..75
Emant300.WriteDigitalPort Method (int)... 75
Emant300.ReadCounter (out Double)...76
Emant300.WritePWM (Double, Double)... 76
Emant300.AIN Enumeration...77
Emant300.VREF Enumeration... 77
Emant300.POLARITY Enumeration..77
Emant300.FILTER Enumeration.. 77
Emant300.CALIBRATION Enumeration...79
Emant300.REF Enumeration.. 79
Emant300.PGA Enumeration..79
Emant300.PWMORCNT Enumeration...79
Emant300.EVENTORTIMED Enumeration.. 81

Appendix C - Emant Instrument Controls Kit Class Reference.. 82
AnalogMeter Class..82
LED Class... 82
Thermometer Class... 82
LineGraph Class..82

4 © 2005, 2006 Emant Pte Ltd www.emant.com

Learning Objectives
Following our step by step Instruction Guide, the user will create a Light Intensity Logger, a Night
Light, and Universal Thermometer. After completion of these exercises, the user would have learnt
the following

Sensor / Actuator
• Photodiode
• Switch
• LED
• Thermistor

Data Acquisition (DAQ)
• Analog Input
• Analog Output
• Digital Input
• Digital Output

Visual Basic
• Basic Program Structure
• Variables & Statements
• Console Input/Output
• Branching Statement if else
• for Loop
• do Loop
• Array
• File IO
• Windows Forms
• Simple Instrument Controls

The exercises will take about 6 hours to complete. The additional optional exercises are intended for
the faster learners.

Important Note

The PC must be correctly setup in order for you to complete the exercises in this instructional
guide. Microsoft Visual Basic .NET 2005 must already be installed. Copy the entire
EmantVB2005 folder to your PC, preferably to your My Documents folder. The exercises may be
completed without the Data Acquisition Module by using the software simulator.

5 © 2005, 2006 Emant Pte Ltd www.emant.com

Introduction

“In problem-based learning, the starting point for learning should be a problem, a query or a puzzle
that the learner wishes to solve”

Boud. D, 1995, p.13. Enhancing Learning through Self Assessment

Types of problems that are solved by measuring light intensity
• In photography or film production, creative manipulation of light can create stunning images

from a low cost consumer camcorder, while poor lighting will cripple the most expensive, state-
of-the-art broadcast camera.

• Light intensity is an important management factor for breeder type poultry. There is evidence
suggesting a minimum threshold intensity is needed to obtain optimal reproduction performance.

• The amount of light received by a plant is an important factor, because plants' growth may suffer
if they do not receive sufficient light. They may lose their characteristic shape and grow thin,
leggy stems. New leaves may also be smaller and turn yellow. Some plants may lose their color
or turn dark green. Plants exposed to excessive light, on the other hand, may not flower properly
or may turn pale green. Different species of plants require different amounts of light.

Light intensity decreases dramatically with distance from the light source. An object located 15 cm
from two 40-watt fluorescent lamps receive about 9300 lux, but only 5400 lux if they are 30 cm
from the lamps.

The human eye is a very poor "instrument" for measuring light intensity, because the pupil adjusts
constantly in response to the amount of light it receives. To accurately measure the light intensity in
a given spot, it is best to use a light meter.

Light intensity may be measured in lux (metric system) or foot-candles (Imperial system). Note that
1 foot-candle = 10.76 lux

To provide some points of reference:
• Full sunlight 11000 lux
• Morning sunlight 6000 lux
• A bright office has about 400 lux
• Moonlight represents about 1 lux

6 © 2005, 2006 Emant Pte Ltd www.emant.com

Computer based Measurement System

A computer based light intensity logger is made up of the following components

• Sensor - a photodiode (BPW34)
• Data acquisition module
• Computer with programming software (Visual Basic)

The light sensor used is the BPW34. This is a
high speed and high sensitive silicon PIN
photodiode in a miniature flat plastic package. A
photodiode is designed to be responsive to optical
input. Due to its water clear epoxy the device is
sensitive to visible and infrared radiation. The
large active area combined with a flat case gives a
high sensitivity at a wide viewing angle.

Photo diodes can be used in either zero bias or
reverse bias. Diodes have extremely high
resistance when reverse biased. This resistance is
reduced when light of an appropriate frequency
shines on the junction. Hence, a reverse biased diode can be used as a light detector by monitoring
the current running through it. Coupled to a 10Kohm resistor, and given the specification of the
BPW34 a simple relationship between lux (light intensity) and voltage is given by

lux = 1333 * Vo

With the Data Acquisition Module (DAQ module), a regular computer can now be used to measure
this voltage. The DAQ module contains an 24-bit ADC (analog to digital converter). During analog
to digital conversion, a digital value can correspond to a range of analog values. Any analog signal
within the zone of one least significant bit (LSB) will have the same digital value. This error is
known as quantization error. The relationship between this error and the bit resolution is given by

error = 1 / 2^n where n is the resolution in bits of the ADC

7 © 2005, 2006 Emant Pte Ltd www.emant.com

For an 24-bit ADC operating over a 2.5V range, the accuracy you obtain cannot be better than
2.5/16777216 V or 0.15 uV. However due to noise, this is only achievable through careful wiring.
In a typical application, a noise floor of about 18 bits or 9 uV is usually achievable.

The DAQ module used (the EMANT300) has up to 6 differential ADC channels, one 8 bit current
DAC channel, 8 digital I/Os and either a 16 bit PWM or a Counter. It is connected to the PC via the
USB port of the computer.

The Light Application Adaptor for the EMANT300 has the photodiode BPW34 connected to AIN0
(input analog) of the DAQ module and the resistor connected to AINCOM

Visual Basic
In the early years of computing for Engineers, FORTRAN was a popular language. With the
introduction of the PCs, Pascal became the language of choice for many programming classes in
Engineering. This was followed by C, Visual Basic and C++. All these programming languages
have strengths in different areas. Some (like C++) are powerful but difficult to work with while
others (Visual Basic) are simpler but limiting in functionality or performance.

Visual Basic was originally created to make creating graphical user interfaces easy. Visual Basic
.NET is a very capable object oriented programming language that retains some of the easy to use
features of the earlier versions.

In the next few exercises, you will learn how to combine the Data Acquisition Module, Light
Application Adaptor and Visual Basic to create a Light Intensity Data Logger.

Web Resource

www.emant.com EmAnt Pte Ltd

8 © 2005, 2006 Emant Pte Ltd www.emant.com

http://www.emant.com/

Exercise 1 – Use a Computer based Light Intensity Data logger
Objective
• Use a computer based measurement system

Over the next few exercises, you will learn how to use Visual
Basic, the Low Cost Data Acquisition (DAQ) Training kit
with a Photodiode to build a Light Intensity Logging System.
In this exercise, you will run a Visual Basic program called
Logger.exe so that you will have an idea of what is a simple
console light intensity logger.

1. Connect the DAQ Training Kit, comprising the USB DAQ Module (EMANT300), Light
Application Adaptor and the USB cable, to your computer. If you do not have the hardware and
will be using the simulator for your learning, please read Appendix A before proceeding to step
2.

2. Browse the EmantVB2005 folder. Click on Logger.exe to run the program
3. This Visual Basic program uses the Photodiode on the Light Application Adaptor to measure the

light intensity. The result is shown in Lux
4. The program measures the ambient light intensity and sets the alarm limit to

80% of the value.
5. The program then takes 10 light intensity values in Lux at the rate of one

measurement per second. If the Lux level is below the limit, the Red LED
will light up. You can change the light intensity measured by covering the
Photodiode with your hands.

6. Before the program ends, it calculates the maximum, minimum and average light intensity values
in Lux.
3.

9 © 2005, 2006 Emant Pte Ltd www.emant.com

Did you see the following instead? Please check your connections if you are using hardware or run
LightApp.exe first if you are using the Simulator. Run the Logger.exe again.

End of Exercise 1

10 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 2 – First Visual Basic Program
Objective
• Familiarize with the Visual Basic development environment
• Write your first Visual Basic program

We will create a simple program that displays the message Hello World on the screen.

1. Start the Microsoft Visual Basic .NET 2005, the Integrated Development Environment (IDE)

11 © 2005, 2006 Emant Pte Ltd www.emant.com

2. Select File -> New Project

3. Select Visual Basic Projects and click on Console Application
4. Call the project name Hello.
5. Click on the OK button to create the project. The source code for a Visual Basic program is

typically stored in one or more text files with a file extension of .vb In this example, it is called
Module1.vb.

6. Add the following line to the generated source code.
Console.WriteLine("Hello World")

12 © 2005, 2006 Emant Pte Ltd www.emant.com

Program 2.1 Hello World

Module Module1
 Sub Main()
 Console.WriteLine("Hello World")
 End Sub
End Module

7. Press Ctrl+F5 to Start without Debugging to run your first program. (Press the Ctrl and F5
function keys at the same time)

13 © 2005, 2006 Emant Pte Ltd www.emant.com

8. Press any key to return to the development environment.
9. Save the project using File->Save All. The project will be stored in the location shown. To store

in a different directory, click on the Browse button and select the directory you want. Please
store your projects in the EmantVB2005 folder. As some exercises will be built on the earlier
exercises to save time, knowing where you saved your projects is important

Namespace
Namespaces provide a hierarchical means of organizing the elements of one or more programs. An
analogy would the naming of cities. Do you know that there are two cities named Austin in the
world? One is in the USA and the other in Argentina. If you want to send mail to either city, you
would write either Austin, USA or Austin, Argentina to be unambiguous. Country names like USA
and Argentina in Visual Basic are called namespaces. In Visual Basic, the default namespace is the
filename you gave. For your first program, the namespace is Hello

Class
Module Module1

A namespace is usually made up of one or more classes. A class is a definition for a specific kind
of object. In subsequent exercises you will noticed that all the automatically generated codes have
the same class called Module1. Thanks to the namespace difference, there is no confusion.

To make the transition from VB6 to VB .NET easier, the Module keyword is used instead of Class
keyword. VB .NET converts the modules to classes automatically.

Fortunately for us, many classes are already predefined for the more common tasks that we need to
do. In this program we make use of the Console class.

Console.WriteLine("Hello World")

The hello, world output is produced using the WriteLine method of the Console Class in the
System namespace.

Console.WriteLine Method (String)

Writes the specified string value, followed by the current line terminator, to the standard output stream.

Main
 Sub Main()

 End Sub

The Main method is a member of the module Module1. The entry point of this application is the
method named Main.

14 © 2005, 2006 Emant Pte Ltd www.emant.com

Important Notes
Please note the following while editing your Visual Basic code to avoid compilation errors

• Visual Basic is not case–sensitive. If you type Console.Writeline as Console.writeline
they are interpreted as the same. Visual Basic applies the appropriate case so if you typed
writeline it is changed to Writeline when you hit enter.

• The line continuation character _ allows you to split a statement over several lines
• ' marks those lines for commenting and are ignored by the compiler

' This is a comment

End of Exercise 2

15 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 3 – Variables, Expressions & Statements
Objective
Learn about
• Variables
• Expressions
• Statements

We will create a program to calculate the equivalent resistance of two resistors in parallel. When
you have two resistors in parallel, the equivalent resistance is given by

1. Follow the steps that you have learnt in the previous exercise to create a new Visual Basic
console project. Name the project Variables.

2. Add the highlighted lines to the generated source code.
Program 3.1 Calculate Equivalent Resistance

Module Module1

 Sub Main()
 Dim R1, R2, Req As Double
 R1 = 10
 R2 = 30
 Req = R1 * R2 / (R1 + R2)
 Console.WriteLine(Req)
 End Sub

End Module

3. Press Ctrl+F5 to Start without Debugging to run your calculator program

4. Press any key to return to the development environment.
Variable Declaration
Dim R1, R2, Req As Double

16 © 2005, 2006 Emant Pte Ltd www.emant.com

R eq= R1∗R2
R1R2

R eq=7.5

• R1, R2 and Req are called variables and they hold values in the computer memory.
• A variable declaration gives it a name and the data type (in this case double). A declaration

begins with the keyword Dim
• A variable must be declared before using it.

Data Types
• The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed or

unsigned form.
• The two floating point types, float and double, are represented using the 32-bit single-precision

and 64-bit double-precision IEEE 754 formats.
• The decimal type is a 128-bit data type suitable for financial and monetary calculations.
• Visual Basic’s bool type is used to represent boolean values—values that are either true or false.
• Character and string processing in Visual Basic uses Unicode encoding. The char type represents

a 16-bit Unicode code unit, and the string type represents a sequence of 16-bit Unicode code
units.

The following table summarizes Visual Basic’s numeric types.

Category Bits Type Range/Precision
Signed
integral

16 Short –32,768...32,767
32 Integer –2,147,483,648...2,147,483,647
64 Long –9,223,372,036,854,775,808...9,223,372,036,854,775,807

Unsigned
integral

8 Byte 0...255

Floating
point

64 Double 5.0×10−324 to 1.7×10308, 15-digit precision

Decimal 128 Decimal 1.0×10−28 to 7.9×1028, 28-digit precision

Assignment of Values into Variables
Once we have declared our variables, we can place values in them by way of the assignment
operator =

R1 = 10
R2 = 30

R1 now holds 10.0 and R2 holds 30.0

The general form of the assignment statement is

variable = expression

Expressions
Expressions are constructed from operands and operators. The operators of an expression indicate
which operations to apply to the operands.

• Examples of operators include +, -, *, /.
• Examples of operands include literals, fields, local variables, and expressions.

17 © 2005, 2006 Emant Pte Ltd www.emant.com

When an expression contains multiple operators, the precedence of the operators controls the order
in which the individual operators are evaluated. For example, the expression (R1 + R2) is evaluated
first because the () operator has higher precedence than the * or / operators.

R1 * R2 / (R1 + R2)

The following table summarizes arithmetic Visual Basic’s operators, listing the operator categories
in order of precedence from highest to lowest. Operators in the same category have equal
precedence.

Category Expression Description
Multiplicative x * y Multiplication

x / y Division (float)
i \ j Division (integer)
x Mod y Modulus

Additive x + y Addition, string concatenation, delegate
combination

x – y Subtraction, delegate removal
Assignment x = y Assignment

Statements
The actions of a program are expressed using statements. Visual Basic supports several different
kinds of statements, a number of which are defined in terms of embedded statements.

• Declaration statements are used to declare local variables and constants.
• Expression statements are used to evaluate expressions. Expressions that can be used as

statements include method invocations, object allocations using the New operator, assignments
using = and the compound assignment operators.

Req = R1 * R2 / (R1 + R2);

Using Integral Data Types
Integral variables like Integer hold whole numbers like 10, 20, 7 compared to floating point
variables like Double which can hold values like 10.1, 7.5

1. Replace

 Dim R1, R2, Req As Double

with

 Dim R1, R2, Req As Integer

18 © 2005, 2006 Emant Pte Ltd www.emant.com

Program 3.2 Calculate Equivalent Resistance using Integral Data Type

Module Module1

 Sub Main()
 Dim R1, R2, Req As Integer

 R1 = 10
 R2 = 30
 Req = R1 * R2 \ (R1 + R2)
 Console.WriteLine(Req)
 End Sub

End Module

2. Run the program again. The result shows 7 rather than 7.5 because the answer is truncated. So be
careful when selecting the data type for your variables to prevent errors.

Explicit Casting
Dim R1 As Double
Dim R2 As Integer
R1 = 10.5
R2 = R1

If you add the following line to the top of your source code

Option Strict On

the following line will report a compilation error because you try to assign a Double to an Integer

R2 = R1

To avoid the compilation error, use casting where the term CType(expression, typename)
tells the compiler to convert the value within into an integer value. However, it will still result in a
loss of data - R2 is 10 instead of 10.5. You can use this type of conversion to convert any numeric
data types.

R2 = CType(R1, Integer)

19 © 2005, 2006 Emant Pte Ltd www.emant.com

How to measure resistance (optional exercise)
Data Acquisition Cards normally measure only voltages. Often it is necessary to measure
resistances if the sensor used changes its resistance with respect to the physical phenomenal
measured.

Examples include the Light Dependent Resistor where the resistance changes with Light Intensity
and the Thermistor where resistance changes with temperature. One simple solution is to connect a
resistor in series with the sensor.

The following Visual Basic code calculates the sensor resistance given the voltage across the sensor
is 3.0 V.

Dim R1, Rs, Vcc, Vo As Double

R1 = 10000.0
Vo = 3.0
Vcc = 5.0
Rs = (R1 * Vo) / (Vcc - Vo)
Console.WriteLine(Rs)

End of Exercise 3

20 © 2005, 2006 Emant Pte Ltd www.emant.com

Vo= Rs
R1Rs

∗Vcc

Rs= R1∗Vo
Vcc−Vo

Exercise 4 – Console Input and Output
Objective
• Learn Console Input
• Revise Console Output
• Revise Variables, Statements and Expressions

In the previous exercise, if we want to calculate the resistance given the voltage we need to edit the
Visual Basic source code, recompile and rerun. It is easier if we can run the same program and
interactively enter the voltage.

In this exercise, we will learn how to enter the voltage interactively using Console Input.

1. Create a new Visual Basic console project. Name the project Consoleio.
2. Add the highlighted lines to the generated source code.
Program 4.1 Interactive Calculator

Module Module1

 Sub Main()
 Dim R1, Rs, Vcc, Vo As Double
 Dim myinput As String
 Console.WriteLine("Voltage")
 myinput = Console.ReadLine
 Vo = Convert.ToDouble(myinput)
 R1 = 10000
 Vcc = 5
 Rs = (R1 * Vo) / (Vcc - Vo)
 Console.WriteLine(Rs)
 End Sub

End Module

3. Press Ctrl+F5 to Start without Debugging to run your calculator program. Key in a voltage
between 0 and 4.5. The program will return the resistance value.
4. .

4. Press any key to return to the development environment.

21 © 2005, 2006 Emant Pte Ltd www.emant.com

5. Run the program several times. Enter a different value of voltage each time and find the
resistance value.

Data Type String
Dim myinput As String

In the earlier exercise we have looked at the use of numeric variables. However, the processing of
text data is also needed. Visual Basic provides the string data type and string variables can hold any
characters. An example of a string is “Hello World”. If you want to assign a string variable, you
must enclose the string in quotes

myinput = “Hello World”

You can join or concatenate strings

myinput = “Hello” + “ World”

Reading from Console
myinput = Console.ReadLine

The ReadLine method of the Console class prompts the user for input and returns the string
that was entered and assign it to the string variable myinput.

Console.ReadLine Method

Reads the next line of characters from the standard input stream.

Convert from string to double
Vo = Convert.ToDouble(myinput)

To convert the string variable to another data type, Visual Basic provides a Convert class in the
System namespace that supports just about every conversion between intrinsic types, such as int,
double and string. Our code converts the string to a double and assigns it to Vo.

22 © 2005, 2006 Emant Pte Ltd www.emant.com

The Convert class returns a type whose value is equivalent to the value of a specified type. Some
of the common methods.

Method Conversion
ToBoolean Converts a specified value to an equivalent Boolean value.
ToDateTime Converts a specified value to a DateTime.
ToDouble Converts a specified value to a double-precision floating point number.
ToInt32 Converts a specified value to a 32-bit signed integer.
ToString Converts the specified value to its equivalent String representation.
ToUInt32 Converts a specified value to a 32-bit unsigned integer.

How to measure current (optional exercise)
In the process industry where sensors are located long distances from the measurement unit, the
sensor is often connected to a signal conditioning unit which output a current that corresponds to
the physical measurement.

A typical sensor could be a CO (carbon monoxide) sensor which outputs a 0 - 20 mA current that
corresponds to a 0 – 300 ppm CO concentration. To measure this current, a simple solution would
be to add a shunt resistance of 250 ohm.

The following Visual Basic code calculates the current input given the voltage across the load
resistance.

Dim R1, Io, Vo As Double
Dim myinput As String
Console.WriteLine("Voltage")
myinput = Console.ReadLine
Vo = Convert.ToDouble(myinput)
R1 = 250
Io = Vo / R1
Console.WriteLine(Io)

End of Exercise 4

23 © 2005, 2006 Emant Pte Ltd www.emant.com

Io=Vo
R5

Exercise 5 – Analog Input (Measure Light Intensity)
Objective
• Learn Analog Input
• Learn more about Class and Object

In this exercise, we will measure the light intensity using a Photodiode and the EMANT300, a Data
Acquisition Module.

Class, objects, methods, properties
We will use cars to illustrate the above concepts.
• Cars have registrations numbers to differentiate one car from another.
• Cars can be described by their make or their color
• Cars can be driven forward and in reverse.

We have two cars, SFL8772 is a Grey Toyota while SCU7056 is a Gold Honda.

In Visual Basic terminology, we would say that
• Car is a class
• SFL8772 and SCU7056 are objects and instances of the Car Class.
• SFL8772.Color = Grey; SCU.Color = Gold

Color is property of the Car Class
• SFL8772.Make = Toyota; SCU.Make = Honda

Make is another property of the Car Class
• SFL8772.Drive(forward); SCU7056.Drive(reverse)

Drive is a method of the Car Class.
• To identify the property, we put a dot or '.' between the object and the property and assign an

appropriate value.
• The difference between method and property is that a method is associated with a task.
• A method may or may not require parameters like forward or reverse to be passed.

In your previous exercises, you have used the Console class and the methods ReadLine and
Writeline to allow your program to interact with the user using the computer monitor and
keyboard.

To perform Data Acquisition, we have provided a class called EMANT300 which works with the
EMANT300 Data Acquisition Module and allows your program to interact with the physical
world..

5. Create a new Visual Basic console project. Name the project ReadLight
6. Add the highlighted lines to the generated source code.
7. Uncomment (remove ') the following line if you are using the simulator
' DAQ.Simulation = True

If you are using the simulator rather than the actual hardware, please read Appendix A now on
instructions to program the simulator. The simulator must be running before you start your own
program.

24 © 2005, 2006 Emant Pte Ltd www.emant.com

Program 5.1 Measure Light Intensity

Imports Emant
Module Module1

Sub Main()
Dim volt, lux As Double

Dim DAQ As Emant300 = New Emant300
' DAQ.Simulation = True

DAQ.Open()
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
lux = 1333 * volt
Console.WriteLine(lux)
DAQ.Close()

End Sub

End Module

Referencing Assemblies
4. Every project contains a References folder for identifying physical assemblies the code in the

project uses. In order to use the Emant300 class, the program must reference the assembly
Emant300.dll . Right Click on the Project-> Add Reference...

8.

25 © 2005, 2006 Emant Pte Ltd www.emant.com

5. Click on the Browse tab

6. Go to the EmantVB2005 folder. Select the assembly file Emant300.dll
7. Click OK to add Emant300.dll

9.

26 © 2005, 2006 Emant Pte Ltd www.emant.com

8. Click Project->Show All Files You should see the Emant300 Assembly included in the
References folder.

9. Press Ctrl+F5 to Start without Debugging to run your light measurement program.
10.

10.Press any key to return to the development environment.
11.Run the program several times. Cover the Photodiode with your hand to

observe the change in light intensity measured.
12.Save your project by clicking on File -> Save All. You will be using this

program in a later exercise.

27 © 2005, 2006 Emant Pte Ltd www.emant.com

Enumerations
Enumerations are strongly typed of constants that help to make programming more meaningful and
safe. In this example, the analog inputs for the EMANT300 module are fixed by hardware. The
corresponding enumeration is

Member name Description

AIN0 AIN0 – Analog Input 0

AIN1 AIN1 – Analog Input 1

AIN2 AIN2 – Analog Input 2

AIN3 AIN3 – Analog Input 3

AIN4 AIN4 – Analog Input 4

AIN5 AIN5 – Analog Input 5

COM AINCOM – Common Analog Input

DIODE DIODE – Temperature Sensing Diode

Create the EMANT300 object
Dim DAQ As Emant300 = New Emant300
An instance of EMANT300 is created and called DAQ. The variable DAQ is the equivalent of the car
registration number. All future references to this object will use this name. See Appendix B for the
full description of this Class.

Open method
DAQ.Open()
Open is a method that instructs the program to connect to the DAQ module that is physically
connected to USB port.

Read Analog Voltage
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0,Emant300.AIN.COM)
The analog voltage across AIN0 and GND (COM) is read. The 10K resistor reading the Photodiode
current is connected to AIN0 and GND (COM). Emant300.AIN.AIN0 and
Emant300.AIN.COM are the respective enumeration.

lux = 1333 * volt
The voltage is converted to Lux and then displayed on the console output. See page 7 for theory
behind the calculations.

Close method
DAQ.Close()
Finally the DAQ connection is closed. To ensure that your programs end correctly, always call the
Close method before you exit your programs.

28 © 2005, 2006 Emant Pte Ltd www.emant.com

Analog Channel
AIN0 Photodiode
COM Connected to Ground

Imports Directive
Imports Emant
Allow unqualified reference to Emant300. If you don't include this Imports directive, all
references to the Emant300 and its object will have to full

Dim DAQ As Emant.Emant300 = New Emant.Emant300
is shortened to
Dim DAQ As Emant300 = New Emant300

Using the Simulator
' DAQ.Simulation = True
Recall from exercise 2 that ' marks those lines for commenting and are ignored by the compiler.
Therefore if you have entered the code with the ' you have commented out the line of code. The
Emant300 component defaults to actual hardware when the Simulation property is not set. If you
are using the simulator, then you should uncomment the line as below

DAQ.Simulation = True

If you uncomment the line and use the hardware later, then just set the property to false.

DAQ.Simulation = False

End of Exercise 5

29 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 6 – Analog Output
Objective
• Analog Output

Problem

Severe acute respiratory syndrome (SARS) is a respiratory or airways infection that broke out in
Asia in early 2003. It is highly infectious and death from the disease is not uncommon. Fever is one
of the first signs of SARS. On June 1, 2003, in Taiwan, a National Temperature Monitoring
Campaign was launched. In the campaign, fever was defined as forehead or axillary temperature
>37°C. You have been tasked to create a fever detector.

Solution
Warning: This is intended as proof of concept exercise and not intended for real life use.

A thermistor will be used to measure the forehead temperature. Thermistors are widely used in
industrial applications because of their sensitivity, small size, ruggedness and low cost. Thermistors
have an electrical resistance that varies non-linearly with temperature. The R-T characteristics of
most thermistors can be described by the Steinhart-Hart equation:

1/T = A + B*(Ln R) + C*(Ln R)3

T is the absolute temperature (in Kelvin) and A, B, and C are constants which can be determined by
measuring three sets of resistance and temperature values during calibration.

Most thermistors have a negative temperature coefficient (NTC), their resistance decreases with
increasing temperature. Thermistors are specified according to its nominal resistance at 25 oC and
commonly available thermistors range from 250 ohms to 100 kohms

The thermistor that we are using has the following characteristics

• Nominal resistance @ 25 oC: 10 kohms
• negative temperature coefficient (NTC)
• Steinhart-Hart equation parameters:

• A= 0.001129148
• B= 0.000234125
• C= 8.76741E-8

As the DAQ module Analog Input measures only voltage, we will need to provide a current source
to convert the resistance to voltage. The EMANT300 has an 8 bit current DAC (digital to analog
converter). As the DAC has 8 bits resolution, we can drive the resistance from 0 to 1mA in 255
steps with increments of about 39uA. In our exercise, we will drive 0.1mA into the thermistor. As
the thermistor has a nominal value of 10 kohm at 25 oC, at this temperature the voltage across the
thermistor will be (0.1mA * 10 kohm) = 1V.

30 © 2005, 2006 Emant Pte Ltd www.emant.com

• Connect the thermistor to the Light Application Adaptor screw terminals labeled IDAC and
AGND

• Connect a wire from IDAC to AIN3
• Connect a wire from AGND to AIN2

1. Create a new Visual Basic console project. Name the project Temperature
2. Add the highlighted lines to the generated source code
3. Uncomment (remove ') the following line if you are using the simulator

' DAQ.Simulation = True

Program 6.1 Measure Temperature using Thermistor
Imports Emant
Module Module1

Sub Main()
Const A As Double = 0.001129148
Const B As Double = 0.000234125
Const C As Double = 0.0000000876741
Dim volt, temp, R As Double

Dim DAQ As Emant300 = New Emant300
'DAQ.Simulation = True
DAQ.Open()
DAQ.WriteAnalog(0.1)
volt = DAQ.ReadAnalog(Emant300.AIN.AIN3, Emant300.AIN.AIN2)
R = volt / 0.0001
Console.WriteLine(R)
temp = 1 / (A + B * Math.Log(R) + C * Math.Pow(Math.Log(R), 3))
temp = temp - 273
Console.WriteLine(temp)
DAQ.Close()

End Sub

End Module

31 © 2005, 2006 Emant Pte Ltd www.emant.com

4. In order to use the Emant300 class, add the class library Emant300.dll to the references folder.
Repeat steps 4 to 8 from exercise 5.

5. Press Ctrl+F5 to Start without Debugging to run the program. Observe the thermistor
resistance and temperature value.

6. Press any key to return to the development environment.
7. Use your finger to touch the thermistor. Rerun the program. The temperature should change to

reflect the higher temperature of your body.

Constants
Constants are used when you value you have assigned is fixed throughout the program. Unlike
Variables, the value cannot be reassigned. Thus it is suitable for A, B and C found in the Steinhart-
Hart equation.
Const A As Double = 0.001129148
Const B As Double = 0.000234125
Const C As Double = 0.0000000876741

Analog Output
DAQ.WriteAnalog(0.1)

The parameter 0.1 (variable is double data type) sets the current output to 0.1 mA. Value must be
between 0 to 1 mA

Math.Log Method
Returns the natural (base e) logarithm of a specified number.
Math.Log(R)

It is one of the methods from the Math Class. The Math Class provides constants and static
methods for trigonometric, logarithmic, and other common mathematical functions. The other
method we used in this example is

Math.Pow Method
Returns a specified number raised to the specified power..
Math.Pow(Math.Log(R),3)
The line perform the following calculation (Ln R)3

Information on the Math Class can be found at the Microsoft website. Search using “Math.Log
MSDN”

End of Exercise 6

32 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 7 – Decision Making Statements
Objective
• Learn If statement
• Revise analog input
• Learn digital output

Night lights are normally used in children's bedrooms to reduce their fear
of the dark and to provide some light in a darkened room. But even without
children, a home should use night lights for safety. The lights use built-in
photo sensors so that they turn on only at night.

In this exercise, we will program the light sensor and the Green LED to
create a simple night light. We use the digital outputs to turn on and off the
LED. To do this we will use the if statement

1. Create a new Visual Basic console project. Name the project Ifled
2. Add the highlighted lines to the generated source code
3. Add the following line if you are using the simulator

DAQ.Simulation = True

Program 7.1 Night Light
Imports Emant
Module Module1

 Sub Main()
 Dim volt, lux, compare As Double
 Dim input As String
 Console.WriteLine("Light Threshold in Lux")
 input = Console.ReadLine
 compare = Convert.ToDouble(input)
 Dim DAQ As Emant300 = New Emant300
 DAQ.Open()
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 If lux < compare Then
 DAQ.WriteDigitalBit(0, True)
 Else
 DAQ.WriteDigitalBit(0, False)
 End If
 DAQ.Close()
 End Sub

End Module

4. In order to use the Emant300 class, add the class library Emant300.dll to the references folder.
Repeat steps 4 to 8 from exercise 5.

5. Press Ctrl+F5 to Start without Debugging to run the program. Enter the Lux threshold and
observe the bulb brightness. The Light Intensity measured in Lux is also displayed.

33 © 2005, 2006 Emant Pte Ltd www.emant.com

6. Press any key to return to the development environment.
7. Run the program several times. Choose a Lux threshold that is between the light intensity when

the Photodiode is covered and when it is not. Observe the Green LED turning on when the light
level drops below the threshold.

Relational and Boolean Operators
Relational Operators are used to compare data. They are used to determine the result of a
comparison to True or False

lux < compare

The following table summarizes some of Visual Basic’s relational and boolean operators, listing the
operator categories in order of precedence from highest to lowest. Operators in the same category
have equal precedence.

Category Expression Description
Relational and
type testing

x < y Less than
x > y Greater than
x <= y Less than or equal
x >= y Greater than or equal
x Is T Return true if x is a T, false otherwise

Equality x == y Equal
x != y Not equal

Logical AND x And y Integer bitwise AND, boolean logical AND
Logical XOR x Xor y Integer bitwise XOR, boolean logical XOR
Logical OR x Or y Integer bitwise OR, boolean logical OR

If statement
The If statement selects a statement for execution based on the value of a boolean expression.

If statement:
If boolean-expression Then statement End If
If boolean-expression Then statement Else statement End If

An if statement is executed as follows:

34 © 2005, 2006 Emant Pte Ltd www.emant.com

1. The boolean-expression is evaluated.
2. If the boolean expression yields true, control is transferred to the statement following Then.

When and if control reaches Else, control is transferred to the end point of the if statement.
3. If the boolean expression yields false and an Else part is present, control is transferred to the

statement following Else.
4. If the boolean expression yields false and if an Else part is not present, control is transferred to

the end point of the if statement.

If lux < compare Then
 DAQ.WriteDigitalBit(0, True)
Else
 DAQ.WriteDigitalBit(0, False)
End If

In our example, assuming compare = 100 and two measurements are taken, one
with lux = 50 and the second with lux = 200

1. the boolean expression is lux < compare
2. lux = 50: DAQ.WriteDigitalBit(0, True); is executed and 5 V is output to the

Green LED. The LED turns off.
3. lux = 200: DAQ.WriteDigitalBit(0, False); is executed and 0 V is output to

the Green LED. The LED turns on.

Digital Output
DAQ.WriteDigitalBit(0, True)

The above code turns the Green LED.

Measure temperature in oF or oC (optional exercise)
Temperature can be measured using either the Centigrade scale or Fahrenheit scale. The Fahrenheit
scale is common in the USA whereas most of the other countries adopt the Centigrade or metric
scale. If you are developing a temperature measurement solution that will be used worldwide, you
have to allow the user the option of selecting either scale.

Develop a Visual Basic program that measures temperature and allows the reading in either oF or oC

Hints:

1. Use the temperature sensor program developed earlier
2. Use the if statement
3. To convert F to C use the following equation

End of Exercise 7

35 © 2005, 2006 Emant Pte Ltd www.emant.com

F=C∗9
5

32

DIO Bits Assignment
0 Green LED (output)
1 Orange LED (output)
2 Red LED (output)
3 Switch (input)

State

Exercise 8 – For Loop
Objective
• For Loop

When Sam was doing the light measurement exercise, he thought that there must be a better to
measure the light intensity repeatedly without him having to run the program each time he needs a
reading.

Computers are capable of doing things over and over again without getting tired or bored like Sam.
An interactive or repetitive loop allows a set of statements to be repeated.

In this exercise, we will create a program that measures the light intensity 10 times at the rate of one
measurement per second.

1. Open your previously saved project Readlight from exercise 5. Look for it in the
EmantVB2005\Readlight folder If you cannot find the project, then build a new project from
scratch.

2. Add the highlighted lines to the generated source code if you are building on the Readlight
project. Add the following line if you are using the simulator
DAQ.Simulation = True

Program 8.1 Measure Light Intensity 10 times

Imports Emant
Module Module1

 Sub Main()
 Dim volt, lux As Double
 Dim i As Integer
 Dim DAQ As Emant300 = New Emant300

 DAQ.Open()
 For i = 0 To 9
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 DAQ.Delay(1000)
 Next
 DAQ.Close()
 End Sub

End Module

3. Press Ctrl+F5 to Start without Debugging to run the program. 10 Light Intensity
measurements in Lux will be displayed at the rate of 1 measurement per second.

36 © 2005, 2006 Emant Pte Ltd www.emant.com

4. Press any key to return to the development environment.
5. Save your project by clicking on File -> Save All. You will be using this program in a later

exercise.
For Loop
The For statement is of the form:

For variable = expression1 To expression2 [Step expression3]

statement1
statement2
..
Next
 For i = 0 To 9
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 DAQ.Delay(1000)
 Next

In the above for loop, the light intensity is measured and displayed 10 times.

• expression1: this is executed when the loop is entered. i is assigned 0 in the above example
• expression2: if this is evaluated true, the statements in the loop are executed otherwise the loop is

exited. Thus as long as i is less or equal to 9, light intensity is measured
• expression3: this is executed each time after the statements in the loop are executed. i is

incremented Step. If omitted, the incremented by 1.

Delay
In the Emant300 class, we have a method called Delay. The program is delayed by the time in
msec. The following line delays the program by 1000 ms before continuing with the next statement.

DAQ.Delay(1000)

37 © 2005, 2006 Emant Pte Ltd www.emant.com

Delay in msecs

Traffic Lights using LEDs (optional exercise)
1. Goto to EmantVB2005 folder and run the Traffic.exe program. When the program runs, the

Green, Yellow and Red LEDs turn on in sequence like the traffic lights.
2. Using the for loop, write your own Visual Basic program that simulate the traffic lights.

Hint:

• use a for loop
• turn on LED (0)
• delay 1 second
• turn off LED (0)
• repeat steps 2-4 for LED (1,2)

End of Exercise 8

38 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 9 – Digital Input
Objective
• Digital Input

In a car, an alarm light is turned on whenever a door is opened. This is implemented by using a
switch to indicate whether is door is opened or closed. The Light Application Adaptor has one
switch. We will modify our earlier exercise 7 replacing the light sensor with the switch to turn on
and off the LED. We will also practice using the For Loop we learnt in the previous earlier.

1. Create a new Visual Basic console project. Name the project ReadSwitch
2. Add the highlighted lines to the generated source code. If you are using the simulator, don't

forget to add the additional line of code.
Program 9.1 Read Switch

Imports Emant
Module Module1

 Sub Main()
 Dim i As Integer
 Dim swstate As Boolean
 Dim DAQ As Emant300 = New Emant300
 DAQ.Open()
 For i = 0 To 9
 swstate = DAQ.ReadDigitalBit(3)
 DAQ.WriteDigitalBit(0, swstate)
 Console.WriteLine(swstate)
 DAQ.Delay(1000)
 Next
 DAQ.Close()
 End Sub

End Module

3. In order to use the Emant300 class, add the class library Emant300.dll to the references folder.
Repeat steps 4 to 8 from exercise 5.

4. Click on Debug-> Start to run the program. The Console Window opens and then closes
automatically after 10 seconds when the program ends. Start without Debugging is useful if the
console displays some information as you are required to enter a key to close the window.

5. Press and hold the switch to turn the Green LED on. Release to turn the Green LED off.
Data Type Boolean

bool swstate;

Boolean data types have 2 states, true or false. You assign a value as follows

swstate = True

39 © 2005, 2006 Emant Pte Ltd www.emant.com

Read Digital Input
swstate = DAQ.ReadDigitalBit(3)

The ReadDigitalBit method returns a boolean value reflecting the switch status (true /false)

End of Exercise 9

40 © 2005, 2006 Emant Pte Ltd www.emant.com

DIO Channel
0 – 2: LED (output)
3: Switch (input)

Exercise 10 – Do Loop
Objective
• Do Loop

Although the For loop solves Sam's tedium of making repeated light intensity measurement, he
needs to know beforehand the number of measurements to take. He wonders if Visual Basic will
allow him to stop measurements when the switch is closed.

In this exercise, we will make use of the do loop to make repeated measurements every second until
a switch is pressed.

1. Create a new Visual Basic project and name it ReadLightdo. Add the highlighted lines to the
generated code. Don't forget to add Emant300.dll to the references and set the Simulation
property if you are not using hardware.

Program 10.1 Measure Light Intensity Until Switch Pressed

Imports Emant
Module Module1

 Sub Main()
 Dim swstate As Boolean
 Dim volt, lux As Double
 Dim DAQ As Emant300 = New Emant300
 DAQ.Open()
 Do
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 swstate = DAQ.ReadDigitalBit(3)
 DAQ.Delay(1000)
 Loop While swstate
 DAQ.Close()
 End Sub

End Module

2. Press Ctrl+F5 to Start without Debugging to run the program. Light Intensity measurements in
Lux will be displayed at the rate of 1 measurement per second. To stop the measurements, press
this button.

3. Press any key to return to the development environment.

41 © 2005, 2006 Emant Pte Ltd www.emant.com

Do statement
The do statement conditionally executes the statement(s) in the loop one or more times.

Do
statement1;
statement2;
..
Loop Until boolean-expression

Do statements in Loop until the condition is true

Do
statement1;
statement2;
..
Loop While boolean-expression

Do statements in Loop while the condition is true

Do
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
lux = 1333 * volt
Console.WriteLine(lux)
swstate = DAQ.ReadDigitalBit(3)
DAQ.Delay(1000)

Loop While swstate

Our do statement is executed as follows:
• Control is transferred to the statements in the do loop. In our example, the program

1. measures the voltage,
2. convert to Lux,
3. displays the value,
4. delays 1 sec and
5. read the switch state. If the switch is not pressed, swstate is true. If switch is pressed,
swstate is false.

• When and if control reaches the end point of the statements in the loop, the boolean-expression is
evaluated.

• If the boolean expression yields true, control is transferred to the beginning of the do statement.
Otherwise, control is transferred to the end point of the do statement.

Pedestrian Crossing (optional exercise)
Modify the traffic lights program you created earlier into a pedestrian crossing, In a pedestrian
crossing, the light stays green until the crossing switch is closed. The green light then turns off, and
the yellow and red light turns on in sequence.

End of Exercise 10

42 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 11 – Array
Objective
• Learn about Arrays

Sam has been asked to help out in a Greenhouse project. He was told that light intensity and
duration are important for crop growth and development as photosynthesis uses light. He has the
following information

• Low light causes plants to be long and spindly, have small leaves, bud blades, poor pollination
and poor fruit quality.

• Photosynthesis is stopped at high light intensity depending on species.

Sam decided that on top of taking light intensity measurements, he would like to know some basic
statistics of the measurements like the maximum, minimum and average light intensities. One way
to do this is to use arrays.

1. Open your previously saved project Readlight from exercise 8. Look for it in the
EmantVB2005\Readlight folder If you cannot find the project, then build a new project from
scratch.

2. Add the highlighted lines to the generated source code if you are building on the Readlight
project

3. The Math Class that you used earlier does not include the basic statistics like maximum,
minimum and average. We have provided the Stat Class which has these methods. The Stat
Class is found in the class library EmantCntrl.dll which is located in the EmantVB2005 folder.
Add the class library EmantCntrl.dll to the references folder. To do this, repeat steps 4 to 8 from
exercise 5.

Program 11.1 Basic Statistics

Imports Emant
Module Module1

 Sub Main()
 Dim i As Integer
 Dim volt, lux As Double
 Dim luxarray(10) As Double
 Dim s As Stat = New Stat
 Dim DAQ As Emant300 = New Emant300
 DAQ.Open()
 For i = 0 To 9
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 luxarray(i) = lux
 DAQ.Delay(1000)
 Next
 Console.WriteLine("Max = {0}", s.Max(luxarray))
 Console.WriteLine("Min = {0}", s.Min(luxarray))
 Console.WriteLine("Ave = {0}", s.Average(luxarray))
 DAQ.Close()
 End Sub

End Module

43 © 2005, 2006 Emant Pte Ltd www.emant.com

11.Press Ctrl+F5 to Start without Debugging to run the program. 10 Light Intensity
measurements in Lux will be displayed at the rate of 1 measurement per second. At the end of
the measurement, basic statistics like maximum, minimum and average light intensities will be
displayed.

5. Press any key to return to the development environment.
6. Save your project by clicking on File -> Save All. You will be using this program in a later

exercise.

Array
 Dim luxarray(10) As Double

An array is a data structure that contains a number of variables which are accessed through
computed indices.

 luxarray(i) = lux

The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array. luxarray elements are of the double data
type

An array has a rank which determines the number of indices associated with each array element.
The rank of an array is also referred to as the dimensions of the array. An array with a rank of one is
called a single-dimensional array. An array with a rank greater than one is called a multi-
dimensional array. Specific sized multi-dimensional arrays are often referred to as two-dimensional
arrays, three-dimensional arrays, and so on. luxarray is a one dimensional array

Each dimension of an array has an associated length which is an integral number greater than or
equal to zero. The dimension lengths are not part of the type of the array, but rather are established
when an instance of the array type is created at run-time. The length of a dimension determines the
valid range of indices for that dimension: luxarray array length is 10

For a dimension of length N, indices can range from 0 to N – 1 inclusive. The total number of
elements in an array is the product of the lengths of each dimension in the array. If one or more of
the dimensions of an array have a length of zero, the array is said to be empty.

44 © 2005, 2006 Emant Pte Ltd www.emant.com

Array length Array data type

The element type of an array can be any type, including an array type.

Statistics
The Stat Class has methods for calculating Maximum, Minimum and Average. You pass to the
methods an array and they return the respective values as a double.

Dim dmax, dmin, dave As Double
Dim s As Stat = New Stat

dmax = s.Max(luxarray)
dmin = s.Min(luxarray)
dave = s.Average(luxarray)

Console Formatting
Console.WriteLine("Max = {0}", s.Max(luxarray))

The console replaces {0}with the result of the method s.Max More information on the formatting
can be found from the Microsoft website. Search using the keywords “Console.WriteLine MSDN”

End of Exercise 11

45 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 12 – File IO
Objective
• File IO

Instead of writing to the console, a StreamWriter class is available for those who wish to write
to file instead of displaying the result on the console.

1. Use File -> Open -> Existing Project, to open the LightFile project in the folder
EmantVB2005\LightFile folder. The following program has been created for you.

Program 12.1 Log to File

Imports Emant
Imports System.IO
Module Module1

 Sub Main()
 Dim volt, lux As Double
 Dim i As Integer
 Dim DAQ As Emant300 = New Emant300
 Dim sw As StreamWriter = New StreamWriter("TestFile.txt")
 DAQ.Simulation = False
 DAQ.Open()
 For i = 0 To 9
 volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
 lux = 1333 * volt
 Console.WriteLine(lux)
 sw.WriteLine(lux)
 DAQ.Delay(1000)
 Next
 DAQ.Close()
 sw.Close()
 End Sub

End Module

2. Modify the DAQ.Simulation property if necessary
3. Click on Debug-> Start without Debugging to run the program. 10 Light Intensity

measurements in Lux will be displayed and written to a text file named TestFile.txt at the rate of
1 measurement per second.

4. Press any key to return to the development environment.
5. You can find TestFile.txt in the EmantVB2005\LightFile\bin\Debug folder.
StreamWriter Class
Imports System.IO
Allows unqualified reference to the StreamWriter objects

Dim sw As StreamWriter = New StreamWriter("TestFile.txt")
Create a StreamWriter object called sw that writes to a text file called TestFile.txt

sw.WriteLine(lux)
StreamWriter method that writes the lux value to the file

46 © 2005, 2006 Emant Pte Ltd www.emant.com

sw.Close()
Close the StreamWriter object called sw

Information on the StreamWriter Class can be found at the Microsoft website. Search using the
keywords StreamWriter Class

End of Exercise 12

47 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 13 – Create a Windows Application
Objective
• Create a Windows Application
• Learn about Controls, Components and Properties
• Learn about Events

The Windows operating system provides a graphical user interface (GUI). Compared to the console
programming, it makes the user's life (but not necessarily the programmer's life) easier. It forms the
basis of most modern programs. Manipulating a mouse and clicking on screen elements is definitely
more intuitive than a text based menu.

If you incorporate the Standard Graphical controls like text boxes, list boxes etc, your users will be
familiar with their use. We will now create a Windows Application that adds two numbers and
displays the result.

1. Select File -> New Project

48 © 2005, 2006 Emant Pte Ltd www.emant.com

2. Select Visual Basic Projects and click on Windows Application

3. Call the project name WinAdder. Click OK
12.

49 © 2005, 2006 Emant Pte Ltd www.emant.com

13.

Your screen should be different from the console application programs you created earlier. You
have the Toolbox and the Form besides the source code. The Toolbox contains the controls and
components that you will place on the Form which is your user interface. Since we need to display
the result of the addition, we will use of the Label control.

Label Control
4. Locate the Toolbox and click on Label. The Toolbox has many tabs,
Label is located in the Common Controls tab. While holding on the
mouse left button, drag the Label to the form to place the Label to
the Form.

50 © 2005, 2006 Emant Pte Ltd www.emant.com

Toolbox – click on Toolbox tab and pin to make it appears Form Properties

NumericUpDown Control

5. From Toolbox, locate and click on NumericUpDown.
The Toolbox has many tabs, NumericUpDown is
located in the Windows Forms tab. You may have to
scroll down to find the control. While holding on the
mouse left button, drag the NumericUpDown to the
form to place the control to the Form. Since we are
adding two numbers, we will need two of these
controls. Repeat the operation to place the second
control. Your Form is now like the one on the right.

Button Control
6. From the same Windows Forms tab, find and place a Button. Your form now looks like

below

7. All controls have properties. Let's make the button more meaningful to the user by changing
the text on the button to Add. The button component has a property called Text. To change
the button text during design, we can modify the Text field in the Properties Window. Click on
the Text field, change the value to Add, hit the <enter> key and the button now displays Add.
Your form now looks like the one below

51 © 2005, 2006 Emant Pte Ltd www.emant.com

Click on Text field to make changes

Events
Design of a Windows Application is different from the console application. The Windows program
is one main loop that waits for the user or the system to do something. When the user or system
does something, an event is triggered. Most of the code in Windows Application comprise
responses to events.

An Event in Windows can be activated by the user by clicking on a button. In our case, we want to
add the two numbers.

14.Double click on the control (the button) will cause its default event handler to be created. An
event handler is a method that is called when an event occurs. In this case, when the user clicks
on the button, the following method is called and whatever code in the method will be executed.

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

52 © 2005, 2006 Emant Pte Ltd www.emant.com

9. Type in the highlighted code to read the NumericUpDown controls' value , add them up and
display on the form using label1 . Your Button1_Click method should look like the
following

 Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

 Dim answer As Decimal
 answer = NumericUpDown1.Value + NumericUpDown2.Value
 Label1.Text = answer.ToString
 End Sub

Note that when you were typing in the code, a different window displays the code. The user
interface window is shown with the extension [Design]

53 © 2005, 2006 Emant Pte Ltd www.emant.com

10.Click on Debug-> Start to run your first Windows program. If you did not have any typing
errors, the program will run and the following window appears.

Change the values in the numeric controls and click the Add button. Label1 will change to
reflect the sum of the numbers.

11.Click on to return to the development environment.
12.Save your project by clicking on File -> Save All.

What if the user wants the answer to be updated when the inputs are
changed rather than wait until the add button is clicked. There are several
ways to do this. One way is to use the timer component.

13.In .NET jargon, a control is a visual component whereas a component
is non-visual. Thus, the Label, NumericUpDown and Button are all
controls whereas the Timer which we will use now is a component. A
component does not appear (or is invisible) during runtime.

14.Goto the Toolbox, click on the Components tab to display the
components as shown on the right

15.Click on Timer. While holding on the mouse left button, drag the
Timer to the form and release the left button to get the component
placed as shown in the figure above. You must release the component
on the form. When you have successfully placed the Timer component, the Form looks as
below. As a non-visual component, it resides in a component tray which is at the bottom of the
form designer.

54 © 2005, 2006 Emant Pte Ltd www.emant.com

The Timer object is called Timer1 and some of its default properties are

• timer1.Enabled is false
• timer1.Interval is 100 ms

16.On the Timer1 properties window, set the Enabled property to True. Double click on the
Timer1 component to create the Timer1's default event called Tick Type in the highlighted
code to the event handler created

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick
 Dim answer As Decimal
 answer = NumericUpDown1.Value + NumericUpDown2.Value
 Label1.Text = answer.ToString
End Sub

You will realize that this is the same code we type in earlier for the Button1_Click event. As
the timer elapsed event is fired every 100ms, the answer is therefore recalculated and displayed
every 100ms.

 Label1.Text = answer.ToString
In Exercise 4, you learnt about the Convert class in the System namespace. In this example, we
convert a decimal to a string before displaying it using label1.

55 © 2005, 2006 Emant Pte Ltd www.emant.com

Click on Debug-> Start to run your modified Windows program. If you did not have any typing
errors, the program will run. Label1 changes to reflect the sum of the numbers. Change the values
in the numeric controls and Label1 will change to reflect the sum of the numbers.

17.Click on to return to the development environment.
18.Save your project by clicking on File -> Save All.

56 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 14 - Install the EMANT300 Components and Instrument
and Controls
Objective
• Learn to install third party controls to the Visual Basic IDE

The standard controls provided are better suited for the Office Automation applications rather than
Measurement Automation applications. In Engineering, we normally display data using charts,
meters and LEDs. Fortunately, these controls are available from third party suppliers like
9Rays.Net. They cost from a few hundred US$ to several thousand US$.

For your exercise, we have included a FREE simple instrument control kit that contains the
following controls

To integrate the Emant Instrument Controls in Visual Studio
.NET:

1. Select the General tab in the Toolbox
2. Right-click on the Toolbox background
3. Select Choose Items...
4. On the Choose Toolbox Items Dialog, select the NET

Framework Components tab

57 © 2005, 2006 Emant Pte Ltd www.emant.com

5. Press the Browse Button
6. Locate and select the EmantCntrl.dll assembly in the EmantCS2005 folder

7. Click on the Namespace tab to sort the controls by Namespace to see the dialog as below. Click
OK

58 © 2005, 2006 Emant Pte Ltd www.emant.com

8. If your controls are successfully installed, your General tab will display the controls. Note that
you need to install your components only once. It will be available for subsequent projects until
you remove them.

9. Repeat the steps for the Emant300 component. The Emant300
component is required to program the EMANT300 USB DAQ module.
You have used it in your earlier exercises as the assembly Emant300.dll

10.See Appendix B & C for the properties associated with these controls.

End of Exercise 14

59 © 2005, 2006 Emant Pte Ltd www.emant.com

Exercise 15 – Create an Instrument User Interface
Objective
• Use third party controls
• Use Emant300 component

In this final exercise, you will build a computer based light logger with a modern GUI.

1. Select File -> New Project
2. Select Visual Visual Basic Projects and click on Windows Application
3. Call the project name WinLogger. Store your projects in the EmantVB2005 folder. Click on the

OK button to create the project.
4. Add the AnalogMeter, LED, LineGraph & NumericUpDown controls shown.
5. From the Toolbox and General tab, click and drag the

AnalogMeter to place it on the form.
6. On its Properties window, set the MaximumValue to 500.
7. Click and drag the LineGraph to place it on the form.
8. On its Properties window, set the YMax to 500.
9. Click and drag the LED to place it on the form.
10.Add the NumericUpDown control you learnt from the previous

exercise. On its Properties window, set the Maximum to 500
11.Add the Label control you learnt from the previous exercise.
12.Now add the two components Timer and Emant300. Click on
Timer. While holding on the mouse left button, drag the Timer to
the form and release the left button to get the component placed as
shown in the figure above. You must release the component on
the form. The Timer component, as a non-visual component,

60 © 2005, 2006 Emant Pte Ltd www.emant.com

resides in a component tray which is at the bottom of the form designer. Repeat for the
Emant300 component. The Form should look as below.

13.If you select the emant3001 object (an instance of the Emant300 component), you can see its
properties. If you are using the simulator, then you should change its Simulation property to
true.

14.Double click on Timer1 component will cause its event handler to be created. Add the
highlighted code below to the timer1_Tick event handler.

Program 15.1 Modify Timer Event Handler

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick
 Dim volt, lux As Double
 volt = Emant3001.ReadAnalog(Emant.Emant300.AIN.AIN0, Emant.Emant300.AIN.COM)
 lux = 1333 * volt
 AnalogMeter1.Value = lux
 LineGraph1.Value = lux
 Led1.Value = lux > NumericUpDown1.Value
 Label1.Text = lux.ToString("0.0")
End Sub

In exercise 5, we learnt that we need to use the Open method to connect to the DAQ module and
the Close method to close the DAQ connection before exiting the program. The Form Class has
two events that you can use to automate the process. When the Form loads, there is a Form.Load
event generated. Likewise when the user closes the Form, a Form.Closing is generated.

61 © 2005, 2006 Emant Pte Ltd www.emant.com

15.To create the Form.Load event,

• click on the Code tab to select the Code View
• select Form1Events from the Class Name drop-down menu.
• from the Method Name drop-down menu, select the Load event.
• Add the highlighted code below to the Form.Load event handler created.

Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Emant3001.Open()
Timer1.Enabled = True

End Sub

16.Repeat the above steps for the Form Closing Event. Add the highlighted code.

Private Sub Form1_Closing(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing

Timer1.Enabled = False
Emant3001.Close()

End Sub

62 © 2005, 2006 Emant Pte Ltd www.emant.com

Method Name drop-down menu Class Name drop-down menu

Assigning Values to the Controls

AnalogMeter1.Value = lux
assign the lux value to the AnalogMeter1

LineGraph1.Value = lux
assign the lux value to the LineGraph1

Led1.Value = lux > NumericUpDown1.Value
the Led1 state depends on whether the measured lux value exceeds the NumericUpDown setting

Label1.Text = lux.ToString("0.0")
In Exercise 4, you learnt about the Convert class in the System namespace. In this example, we
convert a double to a string. The optional format “0.0” instructs the method to display the string
with one decimal place.

17.Click on Debug-> Start to run your light measurement program. Cover or shine on the
photodiode to observe the change in light intensity measured and how it is displayed on your
interface. Modify the NumericUpDown value and observe the change in LED state.

18.Click on to return to the development environment.
19.Save your project by clicking on File -> Save All.

End of Exercise 15

63 © 2005, 2006 Emant Pte Ltd www.emant.com

Appendix A – Using the Simulator

Learning to program in Visual Basic and DAQ, like
most worthwhile endeavors, is inefficient and
requires effort and time. The paradox of learning is
that you learn the most when you make mistakes.

The simulator allows you to work on exercises even
though the hardware is not available. Therefore you
can complete your exercises outside the laboratory
and use the DAQ hardware only to verify your error
free programs.

To use the simulator, browse the EmantVB2005
folder and look for the simulator program called
LightApp.exe Click on the program to start the
simulator.

Your simulator must be running before you run your
own program.

• To change the analog inputs, adjust the sliders
• To operate the switch, click on the switch.
• The LEDs will turn on / off according to your program.

The following information is needed from exercise 5

When you are using the DAQ module, you need the Emant300 class. To use the simulator just add
the line DAQ.Simulation = true between creating the Emant300 object and
Emant300.Open method (add the highlighted line)

Dim DAQ As Emant300 = New Emant300
DAQ.Simulation = True
DAQ.Open()

When you have access to the DAQ hardware, either comment out the Simulation line using ' or
set the property to false and your program will use the hardware

'DAQ.Simulation = True
or

DAQ.Simulation = False;

If you have created your own DAQ solution using the EMANT300 hardware and you wish to create
a simulator for your system, a Sim300 component is available for you to do so. Please email
support@emant.com for information.

64 © 2005, 2006 Emant Pte Ltd www.emant.com

Appendix B - Emant300 Class Reference

Represents the EMANT300, a low cost USB data acquisition module from EMANT PTE LTD. The
USB DAQ Module measures analog input voltages, output analog current and perform digital
input and outputs, PWM or Counter functions.

Example
The following example reads in the analog voltage connected to Analog Input 0 and the
Common Analog Input.

Imports Emant
Module Module1

Sub Main()
Dim volt As Double
Dim DAQ As Emant300 = New Emant300
DAQ.Open()
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.AIN.COM)
Console.WriteLine(volt)
DAQ.Close()

End Sub
Requirements

Namespace: Emant
Assembly: Emant300.dll, CommBase.dll, Sim300.dll, EmantUtil.dll

65 © 2005, 2006 Emant Pte Ltd www.emant.com

List of Members
Emant300 Constructor
Initializes a new instance of the Emant300 class.

public Emant300();
Example
Creates an instance called DAQ

Dim DAQ As Emant300 = New Emant300

Emant300.Simulation Property
Gets or sets the boolean to determine to use the hardware or simulator. Must set Simulation
before calling Open method.

public boolean Simulation {get; set;}
Property Value
true to connect to simulator, false to connect to hardware. Default is false.
Example
Use simulator

Dim DAQ As Emant300 = New Emant300
DAQ.Simulation = True
DAQ.Open()

Emant300.HwId Property
Gets the Hardware Identity of the Emant300 DAQ module connected. The string gives the
model and firmware version

public string HwId {get;}
Property Value
If the following string is returned, Emant300 000001, it indicates that the firmware version is
000001.

Emant300.CommPort Property
Gets the virtual Comm Port, the Emant300 DAQ module is connected to.

public string CommPort {get;}
Property Value
If the module is connected to the virtual serial comm port 2, then COM2 is returned. This
information is useful when you need to connect several Emant300 to the same computer.

66 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.Open Method
Opens the connection to the Emant300.

public boolean Open();

Return Value

Returns true if DAQ module is found.

Example

Finds and opens the connection to the DAQ module.

DAQ.Open()

Emant300.Open Method (bool, string)
Opens the connection to the Emant300.

public boolean Open(bool find, string port);

Parameters

Port The virtual serial comm. Port the Emant300 is connected to.

Return Value

Returns true if DAQ module is found.

Example

Do not find but open the DAQ module that is connected to COM2. Use this to connect to
several Emant300 to the same computer.

DAQ.Open(false,”COM2”)

If find is true, it will find the Emant300 connected with the lowest Virtual Comm Port Number.

Emant300.Close Method
Close the Emant300 connection. IMPORTANT - the Close method must be called before the
program exits if Open was successful.

public void Close();

Example

DAQ.Close()

Emant300.Reset Method
Reset the Emant300.

public void Reset();

67 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.ConfigDIO Method (Int32)
Sets the 8 bits of the DIO indicating the bit should be configured as input or output. Must set
configuration before calling Open method

public Boolean ConfigDIO(Int32 Value)

Parameters

Value 0 to set bit as output and 1 to set bit as input.

Return Value

True if configuration is successful otherwise false.

Example

The light application adaptor has bit 0-2 as outputs and bit 3 as input.

Emant3001.ConfigDIO(&H08)

Emant300.ConfigPWMCounter Method (Emant300.PWMORCNT,
Emant300.EVENTORTIMED, Int32, Int32)
Configures the PWM or Counter

public Boolean ConfigPWMCounter (Emant300.PWMORCNT PWMOrCnt,
Emant300.EVENTORTIMED EventOrTimed, Int32 MSInt, Int32 SetCount)

Parameters

PWMOrCnt Specify if PWM or Counter in operation.
EventOrTimed Specify if Counter is Timed or Event Counting.
MSInt For Timed Counting, specifies the period in mSec to count pulses.
SetCount For Event Counting, used to clear or set count to specific start value.

Return Value

True if configuration is successful otherwise false.

Example

Strain gauges connected in the bridge configuration have very low output voltage. The
following line configures the analog input range to -0.01 to 0.01 and sampling rate to 10Hz

Emant3001.ConfigAnalog(0.01,Emant.Emant300.POLARITY.Bipolar, 10)

Emant300.ConfigAnalog Method (Double, Emant300.POLARITY,Int32)
Configures the Analog Input for Input Range, Polarity and Sampling Rate

public Boolean ConfigAnalog(Double InputLimit, Emant300.POLARITY Polarity, Int32
SampleFreq)

Parameters

InputLimit The input range of the input signal.
Polarity Specify if input signal is unipolar or bipolar.
SampleFreq Sampling frequency. The default is 100 samples/sec.

Return Value

True if configuration is successful otherwise false.

Example

For Strain gauges, set analog input range to -0.01 to 0.01 and sampling rate to 10Hz

Emant3001.ConfigAnalog(0.01,Emant.Emant300.POLARITY.Bipolar, 10)

68 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.ConfigAnalogAdvance Method (Emant300.POLARITY, Emant300.FILTER,
Emant300.CALIBRATION, Boolean, Emant300.REF, Emant300.VREF, Boolean,
Emant300.PGA, Int32, Int32, Int32)
Configures the Analog Input - for advanced users

public Boolean ConfigAnalogAdvance (Emant300.POLARITY Polarity, Emant300.FILTER Filter,
Emant300.CALIBRATION Calibration, Boolean BOD ,Emant300.REF Reference ,
Emant300.VREF VRef, Boolean Buffer, Emant300.PGA Gain, Int32 ACLK, Int32 Decimation ,
Int32 ODAC)

Parameters

Polarity Specify if input signal is unipolar or bipolar.
Filter Set ADC Filter.
Calibration Set ADC Calibration.
BOD When the Burnout Detect is set, two current sources are enabled. The current

source on the positive input channel sources approximately 2µA of current. The
current source on the negative input channel sinks approximately 2µA. This
allows for the detection of an open circuit (full-scale reading) or short circuit
(small differential reading) on the selected input differential pair. Enabling the
buffer is recommended when BOD is enabled. Set true to enable and false to
disable

Reference Specify internal or external reference.
VRef Set the internal reference to either 1.25V or 2.5V
Buffer Set true to enable input Buffer Amplifer, false to disable buffer.
Gain Set PGA gain.
ACLK Analog clock frequency
Decimation Decimation Ratio
ODAC The analog output from the PGA can be offset by up to half the full-scale

input range of the PGA by using the ODAC register. The ODAC (Offset DAC)
register is an 8-bit value; the MSB is the sign and the seven LSBs provide the
magnitude of the offset.

The data rate for the ADC is determined by ACLK and Decimation Ratio. First, the ACLK
register divides the system clock; that value is then divided by 64 to give us the modulation
clock. The data output rate is determined by the Decimation Ratio. The eleven bits in the
decimation ratio divide the modulation clock to
calculate the data output rate.

Return Value

True if configuration is successful otherwise false.

69 © 2005, 2006 Emant Pte Ltd www.emant.com

Data Rate= 22118400
ACLK1∗64∗Decimation 

Emant300.ReadAnalog Method (Emant300.AIN, Emant300.AIN)
Measures the analog voltage of any two of the six plus one common analog inputs of the DAQ
module. Measures the internal temperature sensing diode voltage if both inputs set to DIODE.

public double ReadAnalog(Emant300.AIN PositiveInput, Emant300.AIN NegativeInput);

Parameters

PositiveInput The positive analog input channel.
NegativeInput The negative analog input channel.

Return Value

The value of the voltage read.

Example

Measure voltage difference between analog input channel 0 and analog input common.

Dim volt As Double
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0,Emant300.AIN.COM)

Emant300.ReadAnalogWaveform Method (Emant300.AIN, Emant300.AIN, Int32)
Measures the waveform of any two of the six plus one common analog inputs of the DAQ
module. Measures the internal temperature sensing diode voltage if both inputs set to DIODE.

public double[] ReadAnalogWaveform (Emant300.AIN PositiveInput , Emant300.AIN
NegativeInput , Int32 NumberOfSamples)

Parameters

PositiveInput The positive analog input channel.
NegativeInput The negative analog input channel.
NumberOfSamples Specify the number of samples

Return Value

The waveform read.

Example

Measure a 300 point waveform of the voltage difference between analog input channel 0 and
analog input common.

Dim mywave(300) As Double
mywave = emant3001.ReadAnalogWaveform(Emant300.AIN.AIN3,Emant300.AIN.COM,300)

Emant300.WriteAnalog Method (double)
Set the analog output current of the DAQ module.

public void WriteAnalog(double mA)

Parameters

mA The analog current value to be output (0 to 1mA).

Example

Set Analog Output Current to 0.1 mA

DAQ.WriteAnalog(0.1)

70 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.ReadDigitalBit (Int)
Reads in the state of the Digital Input of the DAQ module.

public boolean ReadDigital(int32 channel)

Parameters

channel The digital channel to read.

Return Value

The return bool represents the state of the digital input.

Example

Read the state of the digital bit 4.

Dim swstate as Boolean
swstate = DAQ.ReadDigitalBit(4)

Emant300.ReadDigitalPort
Reads in the state of the Digital Input of the DAQ module.

public int32 ReadDigital()

Return Value

The return int32 represents the 8 bits of the digital port.

Emant300.WriteDigitalBit Method (int, bool)
Set state of the Digital Ouput of the DAQ module. Does not affect bits configured as Digital
Inputs.

public boolean WriteDigital(int32 channel, boolean DAQDO)

Parameters

channel The digital channel to set.
DAQDO The state to be set.

Example

Set the output of bit 0 of the DIO to high.

DAQ.WriteDigitalBit(0, True)

Emant300.WriteDigitalPort Method (int)
Set state of the Digital Ouput of the DAQ module. Does not affect bits configured as Digital
Inputs.

public boolean WriteDigitalPort(int32 value)

Parameters

value 8 bit value of the output.

71 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.ReadCounter (out Double)
Reads the counter value.

public Int32 ReadCounter(out Double Period)

Return Value

The return int32 represents the count.
Period returns the period if counter is configured for Timed Counting

Example

Read the count and period of the input digital waveform.

Dim Period, temp As Double
temp = Emant3001.ReadCounter(out Period);

Emant300.WritePWM (Double, Double)
Reads the counter value.

public Boolean WritePWM (Double Period , Double DutyCycle)

Parameters

Period Period of the PWM in uS (100 to 35000).
DutyCycle The duty cycle (0 to 100%).

Example

Set up a 10ms period (100 Hz) , 40% duty cycle PWM.

Emant3001.WritePWM(10000, 40);

72 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.AIN Enumeration
Specifies the inputs of the ReadAnalog method.

Members

Member name Description

AIN0 AIN0 – Analog Input 0

AIN1 AIN1 – Analog Input 1

AIN2 AIN2 – Analog Input 2

AIN3 AIN3 – Analog Input 3

AIN4 AIN4 – Analog Input 4

AIN5 AIN5 – Analog Input 5

COM AINCOM – Common Analog Input

DIODE DIODE – Temperature Sensing Diode

Emant300.VREF Enumeration
Specifies the internal reference voltage.

Members

Member name Description

V2_5 Sets internal reference voltage to 2.5V

V1_5 Sets internal reference voltage to 1.5V

Emant300.POLARITY Enumeration
Specifies the polarity of the input voltage.

Members

Member name Description

Unipolar The input voltage range is unipolar (example 0 to 2.5V)

Bipolar The input voltage range is bipolar (example -2.5V to 2.5V)

Emant300.FILTER Enumeration
At the ouput of the ADC is a Digital Filter. The Digital Filter can use either the Fast Settling,
Sinc2, or Sinc3 filter. In addition, the Auto mode changes the Sinc filter after the input channel
or PGA changed. When switching to a new channel, it will use the Fast Settling filter. It will
then use the Sinc2 followed by the Sinc3 filter to improve noise performance.

Members

Member name Description

Auto Auto mode

73 © 2005, 2006 Emant Pte Ltd www.emant.com

Member name Description

Fast_Settling Fast Settling

Sinc_2 Sinc2

Sinc_3 Sinc3

74 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.CALIBRATION Enumeration
The offset and gain errors in Emant300, or the complete system, can be reduced with
calibration. Each calibration process takes seven acquisition clock cycles to complete.
Therefore, it takes 14 clock cycles to complete both an offset and gain calibration..

Members

Member name Description

No_Cal No Calibration

Self_Cal_Offset_Gain Self Calibrate Offset and Gain

Self_Cal_Offset Self Calibrate Offset Only

Self_Cal_Gain Self Calibrate Gain Only

Sys_Cal_Offset System Calibrate Offset Only

Sys_Cal_Gain System Calibrate Gain Only

Emant300.REF Enumeration
The Emant300 can use either an internal or external voltage reference.

Members

Member name Description

Internal Internal voltage reference

External External voltage reference

Emant300.PGA Enumeration
Specifies the gain of the Programmable Gain Amplifier.

Members

Member name Description

G1 Sets Gain to 1

G2 Sets Gain to 2

G4 Sets Gain to 4

G8 Sets Gain to 8

G16 Sets Gain to 16

G32 Sets Gain to 32

G64 Sets Gain to 64

G128 Sets Gain to 128

Emant300.PWMORCNT Enumeration
Use the Counter or the PWM.

75 © 2005, 2006 Emant Pte Ltd www.emant.com

Members

Member name Description

Count Use Counter

PWM Use PWM

76 © 2005, 2006 Emant Pte Ltd www.emant.com

Emant300.EVENTORTIMED Enumeration
The Counter can be configured to either measure frequency/period of a digital waveform or
count events.

Members

Member name Description

Timed Measure Frequency / Period

Event Count Events

77 © 2005, 2006 Emant Pte Ltd www.emant.com

Appendix C - Emant Instrument Controls Kit Class Reference
AnalogMeter Class

Property Data Type Description

Value Double Assign meter reading

MaximumValue Double Set meter maximum limit

MinimumValue Double Set meter minimum limit

AnalogMeter1.Value = 2.5

LED Class
Property Data Type Description

Value Boolean Assign LED state

ColorOn Color Color of LED when it is on

ColorOff Color Color of LED when it is off

Led1.Value = True
Led1.ColorOn = Color.Yellow

Thermometer Class
Property Data Type Description

Value Double Assign thermometer reading

Maximum Double Set thermometer maximum limit

Minimum Double Set thermometer minimum limit

Thermometer1.Value = 25.0

LineGraph Class
Property Data Type Description

Value Double Assign LineGraph reading

YMax Double Set Y Axis maximum limit

YMin Double Set Y Axis minimum limit

XMax Int32 Set number of points on the X axis

LineGraph1.Value = 2.0

78 © 2005, 2006 Emant Pte Ltd www.emant.com

	Learning Objectives
	Important Note

	Introduction
	Types of problems that are solved by measuring light intensity
	Computer based Measurement System
	Visual Basic

	Exercise 1 – Use a Computer based Light Intensity Data logger
	Objective

	Exercise 2 – First Visual Basic Program
	Objective
	Program 2.1 Hello World
	Namespace
	Class
	Main
	Important Notes

	Exercise 3 – Variables, Expressions & Statements
	Objective
	Program 3.1 Calculate Equivalent Resistance
	Variable Declaration
	Data Types
	Assignment of Values into Variables
	Expressions
	Statements
	Using Integral Data Types
	Program 3.2 Calculate Equivalent Resistance using Integral Data Type
	Explicit Casting
	How to measure resistance (optional exercise)

	Exercise 4 – Console Input and Output
	Objective
	Program 4.1 Interactive Calculator
	Data Type String
	Reading from Console
	Convert from string to double
	How to measure current (optional exercise)

	Exercise 5 – Analog Input (Measure Light Intensity)
	Objective
	Class, objects, methods, properties
	Program 5.1 Measure Light Intensity
	Referencing Assemblies
	Enumerations
	Create the EMANT300 object
	Open method
	Read Analog Voltage
	Close method
	Imports Directive
	Using the Simulator

	Exercise 6 – Analog Output
	Objective
	Problem
	Solution
	Program 6.1 Measure Temperature using Thermistor
	Constants
	Analog Output
	Math.Log Method
	Math.Pow Method

	Exercise 7 – Decision Making Statements
	Objective
	Program 7.1 Night Light
	Relational and Boolean Operators
	If statement
	Digital Output
	Measure temperature in oF or oC (optional exercise)

	Exercise 8 – For Loop
	Objective
	Program 8.1 Measure Light Intensity 10 times
	For Loop
	Delay
	Traffic Lights using LEDs (optional exercise)

	Exercise 9 – Digital Input
	Objective
	Program 9.1 Read Switch
	Data Type Boolean
	Read Digital Input

	Exercise 10 – Do Loop
	Objective
	Program 10.1 Measure Light Intensity Until Switch Pressed
	Do statement
	Pedestrian Crossing (optional exercise)

	Exercise 11 – Array
	Objective
	Program 11.1 Basic Statistics
	Array
	Statistics
	Console Formatting

	Exercise 12 – File IO
	Objective
	Program 12.1 Log to File
	StreamWriter Class

	Exercise 13 – Create a Windows Application
	Objective
	Label Control
	NumericUpDown Control
	Button Control
	Events

	Exercise 14 - Install the EMANT300 Components and Instrument and Controls
	Objective

	Exercise 15 – Create an Instrument User Interface
	Objective
	Program 15.1 Modify Timer Event Handler
	Assigning Values to the Controls

	Appendix A – Using the Simulator
	Appendix B - Emant300 Class Reference
	Example
	Requirements
	List of Members
	Emant300 Constructor
	Emant300.Simulation Property
	Emant300.HwId Property
	Emant300.CommPort Property
	Emant300.Open Method
	Emant300.Open Method (bool, string)
	Emant300.Close Method
	Emant300.Reset Method
	Emant300.ConfigDIO Method (Int32)
	Emant300.ConfigPWMCounter Method (Emant300.PWMORCNT, Emant300.EVENTORTIMED, Int32, Int32)
	Emant300.ConfigAnalog Method (Double, Emant300.POLARITY,Int32)
	Emant300.ConfigAnalogAdvance Method (Emant300.POLARITY, Emant300.FILTER, Emant300.CALIBRATION, Boolean, Emant300.REF, Emant300.VREF, Boolean, Emant300.PGA, Int32, Int32, Int32)
	Emant300.ReadAnalog Method (Emant300.AIN, Emant300.AIN)
	Emant300.ReadAnalogWaveform Method (Emant300.AIN, Emant300.AIN, Int32)
	Emant300.WriteAnalog Method (double)
	Emant300.ReadDigitalBit (Int)
	Emant300.ReadDigitalPort
	Emant300.WriteDigitalBit Method (int, bool)
	Emant300.WriteDigitalPort Method (int)
	Emant300.ReadCounter (out Double)
	Emant300.WritePWM (Double, Double)
	Emant300.AIN Enumeration
	Emant300.VREF Enumeration
	Emant300.POLARITY Enumeration
	Emant300.FILTER Enumeration
	Emant300.CALIBRATION Enumeration
	Emant300.REF Enumeration
	Emant300.PGA Enumeration
	Emant300.PWMORCNT Enumeration
	Emant300.EVENTORTIMED Enumeration

	Appendix C - Emant Instrument Controls Kit Class Reference
	AnalogMeter Class
	LED Class
	Thermometer Class
	LineGraph Class

