Emant Pte Ltd Low Cost Bluetooth Data Acquisition Module

EMANT380

FEATURES

- Low cost and portable data acquisition system
 - up to 6 channels of differential multiplexed ADC
 - single channel 22 bit @ 10 samples/sec
 - single channel 16 bit waveform @ 2500 samples/sec (max)
 - Programmable Gain 1-128
- 1 channel of 8-bit D/A conversion (current output)
- 8 digital IO channels
- One 16-bit general-purpose counter OR 16-bit PWM
- Bluetooth connectivity to desktop PC, notebook, mobile phone, PDA
- Low cost and easily available 25 pin D-Sub connects to the physical world.
- · Application adaptors with instructional guides for fuss free learning.

APPLICATIONS

The **EMANT380** is a low-cost and compact data acquisition system developed for learning purposes. It can be used readily with a desktop personal computer for data acquisition and control. When connected to a notebook, mobile phone or PDA, portability and isolation is achieved.

Together with the communication capabilities inherent in the computer or mobile phone, it allows learners to experiment and design solutions that **capture**, **compute**, **control and connect** to the world.

The high resolution ADC, Differential Inputs & Programmable Gain Amplifier simplifies sensor connection. Learners can connect thermocouples and strain gauges directly to read temperature and strain without needing expensive and sophisticated signal conditioning.

The current output DAC allows users to measure resistance directly. Thus, resistive sensors like thermistors can be connected directly to measure temperature.

The counter can be used to measure flow rate or RPM. When the counter is not used, its clock can be used for PWM output for heating or motor control experiments.

Bluetooth allows for wireless connection.

SOFTWARE SUPPORT AVAILABLE

4 icons (LabVIEW) or 7 lines of code (C# on .NET) later, the learner has created a voltage meter.

LabVIEW driver (ver7.0 or later)

.NET driver for use with C#, VB and C++ (.NET Framework 2.0 or later)

double volt;	
EMANT300 DAQ = new EMANT300();	
DAQ.Open(false,"COM6");	
DAQConfigAnalog(1.5, Emant300.POLARITY.Unipolar, 10)0, Emant300.VREF.V1_25, false);
volt = DAQ.ReadAnalog(Emant300.AIN.AIN0, Emant300.A	IN.COM);
Console.WriteLine(volt);	
DAQ.Close();	
the Internet connectivity the same voltage can	now be read across the world using email brows

Using the Internet connectivity, the same voltage can now be read across the world using email, browser or messenger.

Connected to a mobile phone (running Windows Mobile 6.0 or later and using Compact .NET Framework 2.0), this voltage reading is now available on the mobile phone.

Simple examples are provided with instructional guide to allow the learner to explore and build on the knowledge.

SPECIFICATIONS

Typical at 25 °C unless otherwise noted.	VDD = 3.3V		
Parameter	Condition	Specification	Unit

ANALOG INPUT (AIN0-AIN5, AINCOM)					
Number of analog input channels 6 single ended / 3 differential					
Resolution		24	Bits		
Sampling Rate Resolution	10 samples/s	22	Bits		
Single Channel ¹	2500 samples/s	16	Bits		
Max Sampling Rate ¹		2500	Hz		
Input gains (PGA)		1, 2, 4, 8, 16, 32, 64 or 128			
Full-Scale Input Voltage Range	Unipolar	0 to VREF/PGA	V		
	Bipolar	±VREF/PGA	V		
Analog Input Range	Buffer OFF	GND to VDD	V		
	Buffer ON	GND + 50mV to VDD - 1.5	V		
Differential Input Impedance Buffer	Buffer OFF	7/PGA	MΩ		
Input Current	Buffer ON	0.5	nA		

Note 1: Single Channel. There is a 3 cycle delay betw een samples of multiplexed inputs

ON-CHIP VOLTAGE REFERENCE				
Output Voltage	VREFH = 1	2.5 (VDD from 3.3V to 3.6V)	V	
	VREFH = 0	1.25	V	
Current Source		2.5	mA	
Current Sink		60	UA	

	TEMPERATURE SENSO	R	
Temperature Sensor Voltage	T = +25°C	115	mV
Temperature Sensor Coefficient		375	µV/°C

IDAC OUTPUT CHARACTERISTICS					
Full-Scale Output Current 1 mA					
Compliance Voltage	VDD – 1.5	V			
Resolution	8	Bits			

Fig 1: Analog Input Schematic

Typical at 25 °C unless otherwise noted. VDD = 3.3V					
Parameter	Condition	Specification	Unit		
	DIGITAL I	0			
Number of channels		8			
		Each channel configurable as input			
Direction control		or output			
Absolute maximum voltage range		-0.3 to VDD+0.3	V		
Input Low Voltage (Max)		0.2 VDD	V		
Input High Voltage (Min)		0.6 VDD	V		
Output low voltage (Max)	l _{o∟} =1mA	0.4	V		
	I _{oL} =20mA	1.5	V		
Pull-Up Resistors		13	kΩ		
	COUNTER	R ²			
Number of counters		1			
Resolution		16	Bits		
Counter measurements		Edge counting (falling edge)			
Maximum input frequency		5	MHz		
Input Low Voltage (Max)		0.2 VDD	V		
Input High Voltage (Min)		0.6 VDD	V		
PWM ² (Pu	PWM ² (Pulse Width Modulation Output)				

Number of channels		1	
Resolution		16	Bits
Period		0.05 – 35	ms
Duty cycle		0 to 100	%
Deadtime		8	usec
Output low voltage (Max)	I _{OL} =20mA	1.5	V
Output high voltage (Min)	I _{он} =20mA	VDD – 1.5	V

Note 2: Both the Counter and PWM shares the same clock. Therefore only one function is available at any one time.

POWER SUPPLY			
VDD	Typical	3.3	V
	Max	3.6	V
	Min	3.0	V

PHYSICAL CHARACTERISTICS				
Dimensions 5.7 by 9.5 by 2.4 cm				
Weight	60	g		
O Connectors 25 pin D-Sub connector (Plug)				

BLUETOOTH CHARACTERISTICS

Fully Qualified Bluetooth 2.0/1.2/1.1 Class 1 radio, 100m distance Low power modes 50mA TX, 40mA RX (connected) Default Pairing code: 1234 Module Approval: FCC ID: T9J-RN41, ICS: 6514A-RN41, CE: 0681 Bluetooth SIG Qualified: B013180

Fig 2: DB25 pin out connection to the real world

DB25 Pin	Signal Name	Description	DB25 Pin	Signal Name	Description
1	IDAC	Analog Current Output	14	D0	Digital IO
2	AGND	Analog Ground	 15	D1	Digital IO
3	REFOUT	Reference Voltage +ve	16	D2	Digital IO
4	REFIN-	Reference Voltage -ve	17	D3	Digital IO
5	AINCOM	Analog Input Common	 18	D4	Digital IO
6	AIN5	Analog Input	 19	D5	Digital IO
7	AIN4	Analog Input	20	D6	Digital IO
8	AIN3	Analog Input	21	COUNTER	Counter Input
9	AIN2	Analog Input	 22	PWM	PWM Output
10	AIN1	Analog Input	 23	D7	Digital IO
11	AIN0	Analog Input	 24	Gnd	Supply Gnd
12	NC	Not Connected	 25	VDD	3.3V Supply
13	NC	Not Connected			

TYPICAL APPLICATION SCHEMATICS

Fig 4: Temperature Measurement using Thermocouple with Thermistor for Cold Junction Compensation (REFIN- connected to AGND to use the internal reference)